TRAJECTORY PLANNING FOR
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Based on MSc Research by Chinthaka Porawagama

Industrial Robotics Involves in
» Pick-and-place operations
» Assembling operations
» Loading and stacking
» Automated welding, etc.

Proper motion planning is
needed in these applications
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Trajectory Planning

Manipulators with multi degree of
freedom for accomplishing various
complex manipulation in the work

space

Path: only geometric description
Trajectory: timing included

Trajectory Planning
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Joint Space Vs Operational Space
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= Joint-space description:

+ The description of the motion to be made by the robot by
its joint values.

+ The motion between the two points is unpredictable.

= Operational space description:
* In many cases operational space = Cartesian space.
+ The motion between the two points is known at all times
and controllable.

* It is easy to visualize the trajectory, but it is difficult to
ensure that singularity does not occur.

Planning in Operational Space

Cartesian-space trajectory

(a) The trajectory specified in Cartesian
coordinates may force the robot to run
into itself, and

(b) the trajectory may requires a sudden
change in the joint angles.

Sequential motions of a robot
to follow a straight line.




Planning in Operational Space
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= Calculate path from the = Advantages
|n|t_|al point to the final - Collision free path can
point. be obtained.
= Assign a total time Tjatn
to traverse the path. _
= Discretize the points in = Disadvantages
time and space. » Computationally
= Blend a continuous time expensive due to
function between these inverse kinematics.
points » It is unknown how to set
= Solve inverse kinematics the total time 7;,.,, -

at each step.

Planning in Joint Space
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= Calculate inverse = Advantages
kinematics solution from . Inverse kinematics is
init'ial point to the final computed only once.
point. - Can easily take into

= Assign total time T}, account joint angle,
using maximal velocities in velocity constraints.
joints.

. .DI.SCI'etI.ZG the-} mc;hw.dual = Disadvantages
joint trajectories in time. ,
+ Cannot deal with

* Blend a continuous operational space
function between these obstacles.
point.




Path Definition

“Expressing the desired positions of a manipulator
in the space, as a parametric function of time”
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= B. Siciliano et al. Robotics (Modelling, planning and
control), Springer, Berlin, 2009, chapter 4: Trajectory
planning, pages 161-189.

Task to Trajectory

L Task planning

joint space

II. Sequence of IV Cartesian geometric
pose points III. Interpolation in path Cartesian Space
(“knots™)in Cartesian space (position+orientation)
Cartesian space r=p
V. Path sampling and Cartc_s_ianto]_ointspacc
inverse Einematics transition by inverse
kinematics
VL Sequence of
posepoints VIL Interpolation Joint Space
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joint space
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Types of Motion

1. Point to point motion:

. End effector moves from a start point to "o
end pointin work space
1 All joints’ movements are coordinated for
the point-to-point motion end
1 End effector travels in an arbitrary path
2. Motion with Via Points start
1 End effector moves through an
intermediate point between start and end
1 End effector moves through a via point
end via

without stopping

Joint Space Planning

Point to point motion:
“Describing of joints’ motions from start to end by smooth functions
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Joint Space Planning

Point to point motion:

“Describing of joints’ motions from start to end by smooth functions

End point ‘B’
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Parametric Representation

1. Inverse kinematics of start
and end points (A & B)

U

2. Joint angles for start and
end points
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Joint Space Planning

End point ‘B’
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Parametric Representation

3. Interpolation of start and
end joint angles by
smooth functions
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4. Joint space trajectories for
each joint




Smooth Motion = Quality of Work

o Non smooth trajectories lead to low quality in
production.

Vibration
Error in path tracking
Manipulator wear

Poor quality in task
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o Infinite accelerations at endpoints

o Discontinuous velocity when two trajectory
segments are connected (at via points)




Triangular Velocity Trajectory
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o Acceleration discontinuity at endpoints and at
the midpoint of the trajectory

Linear Trajectory with Parabolic Blends
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Linear Trajectory with Parabolic Blends
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o Total angular motion
S = 2(parabolic) + Linear

i 1. .
¢ —q’ = 2><§qbt§+q”(tg—tb)
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o For a linear part to exist
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Inclusion of Via Points into a Linear
Trajectory with Parabolic Blends

o Via points (knot points) can be introduced
between start and goal (¢*, ¢%) positions with
constant acceleration at via point.

Virtual or pseudo
* via point

}*3

Multi-stage linear parabolic blend spline

Cubic Polynomial (Bring in Smoothness)
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Cubic Polynomial (zero sped at end-

points)
]|
0 Satisfies position and velocity at end-points

0 EQ: zero speed at end-points
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Cubic Polynomial (nonzero speeds at

end- points)
o Satisfies position and velocity at end-points

0 EQ: non-zero speeds at end-points
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Cubic Spline Trajectory

I
o Stitching cubic polynomials together

o Acceleration is not continuous at via (stitching points)




5th Order Polynomial
(more oscillatory)
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